1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#![warn(missing_docs)]

//! # SPECS Parallel ECS
//!
//! This library provides an ECS variant designed for parallel execution
//! and convenient usage. It is highly flexible when it comes to actual
//! component data and the way it is stored and accessed.
//!
//! Features:
//!
//! * depending on chosen features either 0 virtual function calls or one per
//!   system
//! * parallel iteration over components
//! * parallel execution of systems
//!
//! ## High-level overview
//!
//! One could basically split this library up into two parts:
//! The data part and the execution part.
//!
//! ### The data
//!
//! `World` is where component storages, resources and entities are stored.
//! See the docs of [`World`] for more.
//!
//! [`World`]: world/struct.World.html
//!
//! [`Component`]s can be easily implemented like this:
//!
//! [`Component`]: trait.Component.html
//!
//! ```rust
//! use specs::prelude::*;
//!
//! struct MyComp;
//!
//! impl Component for MyComp {
//!     type Storage = VecStorage<Self>;
//! }
//! ```
//!
//! Or alternatively, if you enable the `"derive"` feature, you can use a
//! custom `#[derive]` macro:
//!
//! ```rust
//! # extern crate specs;
//! # extern crate specs_derive;
//! # #[cfg(not(feature = "specs-derive"))] use specs_derive::Component;
//! # #[cfg(not(feature = "specs-derive"))] use specs::prelude::*;
//!
//! # #[cfg(feature = "specs-derive")]
//! use specs::{prelude::*, Component};
//!
//! #[derive(Component)]
//! #[storage(VecStorage)] // default is `DenseVecStorage`
//! struct MyComp;
//! # fn main() {}
//! ```
//!
//! You can choose different storages according to your needs.
//!
//! These storages can be [`join`]ed together, for example joining a `Velocity`
//! and a `Position` storage means you'll only get entities which have both of
//! them. Thanks to rayon, this is even possible in parallel! See [`ParJoin`]
//! for more.
//!
//! [`join`]: trait.Join.html#method.join
//! [`ParJoin`]: trait.ParJoin.html
//!
//! ### System execution
//!
//! Here we have [`System`] and [`Dispatcher`] as our core types. Both types
//! are provided by a library called `shred`.
//!
//! [`Dispatcher`]: struct.Dispatcher.html
//! [`System`]: trait.System.html
//!
//! The `Dispatcher` can be seen as an optional part here;
//! it allows dispatching the systems in parallel, given a list
//! of systems and their dependencies on other systems.
//!
//! If you don't like it, you can also execute the systems yourself
//! by using [`RunNow`].
//!
//! [`RunNow`]: trait.RunNow.html
//!
//! `System`s are traits with a `run()` method and an associated
//! [`SystemData`], allowing type-safe aspects (knowledge about the
//! reads / writes of the systems).
//!
//! [`SystemData`]: trait.SystemData.html
//!
//! ## Examples
//!
//! This is a basic example of using Specs:
//!
//! ```rust
//! extern crate specs;
//!
//! use specs::prelude::*;
//!
//! // A component contains data which is
//! // associated with an entity.
//!
//! struct Vel(f32);
//!
//! impl Component for Vel {
//!     type Storage = VecStorage<Self>;
//! }
//!
//! struct Pos(f32);
//!
//! impl Component for Pos {
//!     type Storage = VecStorage<Self>;
//! }
//!
//! struct SysA;
//!
//! impl<'a> System<'a> for SysA {
//!     // These are the resources required for execution.
//!     // You can also define a struct and `#[derive(SystemData)]`,
//!     // see the `full` example.
//!     type SystemData = (WriteStorage<'a, Pos>, ReadStorage<'a, Vel>);
//!
//!     fn run(&mut self, (mut pos, vel): Self::SystemData) {
//!         // The `.join()` combines multiple components,
//!         // so we only access those entities which have
//!         // both of them.
//!
//!         // This joins the component storages for Position
//!         // and Velocity together; it's also possible to do this
//!         // in parallel using rayon's `ParallelIterator`s.
//!         // See `ParJoin` for more.
//!         for (pos, vel) in (&mut pos, &vel).join() {
//!             pos.0 += vel.0;
//!         }
//!     }
//! }
//!
//! fn main() {
//!     // The `World` is our
//!     // container for components
//!     // and other resources.
//!
//!     let mut world = World::new();
//!     world.register::<Pos>();
//!     world.register::<Vel>();
//!
//!     // An entity may or may not contain some component.
//!
//!     world.create_entity().with(Vel(2.0)).with(Pos(0.0)).build();
//!     world.create_entity().with(Vel(4.0)).with(Pos(1.6)).build();
//!     world.create_entity().with(Vel(1.5)).with(Pos(5.4)).build();
//!
//!     // This entity does not have `Vel`, so it won't be dispatched.
//!     world.create_entity().with(Pos(2.0)).build();
//!
//!     // This builds a dispatcher.
//!     // The third parameter of `add` specifies
//!     // logical dependencies on other systems.
//!     // Since we only have one, we don't depend on anything.
//!     // See the `full` example for dependencies.
//!     let mut dispatcher = DispatcherBuilder::new().with(SysA, "sys_a", &[]).build();
//!
//!     // This dispatches all the systems in parallel (but blocking).
//!     dispatcher.dispatch(&mut world);
//! }
//! ```
//!
//! You can also easily create new entities on the fly:
//!
//! ```
//! use specs::prelude::*;
//!
//! struct EnemySpawner;
//!
//! impl<'a> System<'a> for EnemySpawner {
//!     type SystemData = Entities<'a>;
//!
//!     fn run(&mut self, entities: Entities<'a>) {
//!         let enemy = entities.create();
//!     }
//! }
//! ```
//!
//! See the repository's examples directory for more examples.

pub extern crate hibitset;
#[cfg(feature = "parallel")]
pub extern crate rayon;
pub extern crate shred;
pub extern crate shrev;
#[cfg(feature = "uuid_entity")]
pub extern crate uuid;

#[cfg(feature = "serde")]
pub mod saveload;

mod bitset;
pub mod changeset;
pub mod error;
pub mod join;
pub mod prelude;
pub mod storage;
pub mod world;

pub use hibitset::BitSet;
pub use shred::{
    Accessor, AccessorCow, BatchAccessor, BatchController, BatchUncheckedWorld,
    DefaultBatchControllerSystem, Dispatcher, DispatcherBuilder, Read, ReadExpect, RunNow,
    RunningTime, StaticAccessor, System, SystemData, World, Write, WriteExpect,
};
pub use shrev::ReaderId;

#[cfg(feature = "parallel")]
pub use shred::AsyncDispatcher;

#[cfg(feature = "specs-derive")]
pub use specs_derive::{Component, ConvertSaveload};

#[cfg(feature = "parallel")]
pub use crate::join::ParJoin;
pub use crate::{
    changeset::ChangeSet,
    join::Join,
    storage::{
        DefaultVecStorage, DenseVecStorage, FlaggedStorage, HashMapStorage, NullStorage,
        ReadStorage, Storage, Tracked, VecStorage, WriteStorage,
    },
    world::{Builder, Component, Entities, Entity, EntityBuilder, LazyUpdate, WorldExt},
};